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Abstract

Within the general Gel’fand—Yaglom method, starting from the extended 28-component
representation of the Lorentz group, we construct a new relativistic P -invariant generalized
equation for a spin-1/2 particle possessing three characteristics in addition to the electric
charge. The model is first developed for a free particle, where the corresponding system of
spinor equations is derived and then transformed into spin-tensor form. In this form, we
incorporate the interaction with external electromagnetic fields. By eliminating the accessory
variables of the complete wave function, we obtain a minimal four-component Dirac-like
equation that contains three new interaction terms, interpreted as arising from the additional
electromagnetic characteristics of the particle. This approach is further extended to a Riemann
space—time background within the conventional tetrad formalism, leading to additional
geometrical interaction terms involving the Ricci scalar R(x), the Ricei tensor R, 5, and the

Riemann curvature tensor R ppo () -

Keywords: spin-1/2 particle, relativistic symmetry, generalized equation, additional
electromagnetic characteristics, external electromagnetic and gravitational fields

1. Introduction

The general theory of relativistic wave equations has a long history [1]-[26]; for more
details, see the recent book [24]. Within the general method of Gel’fand—Yaglom [9], we
consider an extended 28 -component representation of the Lorentz group, comprising four
bispinors and one third-rank spinor. This choice allows the construction of a relativistic system
of equations for a spin-1/2 particle that possesses, in addition to electric charge, three further
electromagnetic characteristics. The introduction of these characteristics extends the standard
Dirac formalism by accommodating additional interaction structures, including higher-order
derivatives, within a covariant framework.

We first work in Minkowski space and derive a four-component Dirac-like equation
containing the additional interaction terms via couplings to the electromagnetic field tensor.
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These terms are interpreted as corresponding to the three supplementary electromagnetic
characteristics, and their structure goes beyond the minimal-coupling scheme by involving
second-order derivatives. The resulting equation therefore generalizes the standard Dirac
equation both in algebraic structure and in the types of physical interaction it describes.

The formalism is then extended to a Riemannian space—time background using the
tetrad approach, where additional couplings to the curvature appear through the Ricci scalar,
Ricci tensor, and Riemann tensor. Finally, the non-relativistic limit is developed for both flat
and curved backgrounds, yielding generalized Pauli-type equations in which the same
combination of electromagnetic parameters governs both magnetic and curvature-induced
interactions. This framework thus provides a unified description of anomalous electromagnetic
properties and geometric effects for spin-1/2 particles.

2. The new equation for a spin-1/2 particle
We construct a generalized relativistic equation for a spin-1/2 particle based on an
extended 28-component set of irreducible representations of the proper Lorentz group.
T =4[(0,1/2)®(1/2,0)]@[(1/2,1)®(L1/2)], (2.1)

with the linking scheme
4(0,1/2) - 4(1/2,0)

| | (22)
(1/2,1) — (1,1/2).
First, we construct a matrix equation for a free particle (applying the ict -metric):
(Fﬂ8ﬂ+M)‘P:0, u=12,34. (2.3)

In the modified Gel’fand—Yaglom basis, the matrix I', of the basic equation can be
written in the form

7 g, o
r,= 7 (2.4)

0 oLy,

where the spin blocks ¢ and ¢ have the structure (corresponding to the linking scheme

(2.2))

P e
4P Y P

c(l/Z):cgll/Z) c§12/2) c§13/2) cgz/z) c§15/2) , 0(3/2)=c§§/.2), 2.5)
4P Y P
47D D P

and 7, is the 2x2 unit matrix. The involved irreducible representations are enumerated as
follows:
1,2,3,4=(0,1/2), 1,2,3,4'=(1/2,0), 5=(1,1/2), 5=(1/2,1).  (2.6)

Below we use shorter A and £ notations:
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A=, A =cp, =033, Ay =cyy,

%:—icw, %=—ic25,, %z—ic35., %=—ic45., 2.7)
/85 186 ﬁ7 ﬂS

= =1iCs, ——= =1ICsr1, —==10Cs31, —— =ICsy:.
\/5 51 \/5 52 \/E 53 \/5 54

The involved parameters obey a number of quadratic constraints, which follow from standard
physical requirements on the equation:

A+Ah+A4+4, =1,
P+ D+ i o 4 D a2 B s 4 P+ o 4 i) =0,
Pade+ Ahaa t Bisda+ Iadoat
S+t 2RS4 G s+ DB+t 2y + A+ + B+ 2)BAL =0,y
Pade ot isda+ Tadoat

SLA=20B s+ (=2 + (1= BB + (= 2B ] =0,

2044+ 3B, Bs (M Ay + MAy + 4 ,) + 38, B (M Ay + Ady + 3 A,) +
36,6 (MAy + Ay + 2 A4) + 3B, By (N Ay + A ds + A, 45) = 0.

3. The presence of electromagnetic fields
We omit the technical details and start with the resulting first-order equations in the
presence of external electromagnetic fields (D, =0, —ied,, ):

A ) 1 A
(M + AD)¥YD —i2p {D,¥, —ZD(;/”‘P”)} =0,

A ) I A

(M +24,D)Y? -i28,{D,¥, —2 P Y )i =0,
A ) 1 A

(M + DYV =2 (D, ¥, =2 D(7, ¥ )} =0, (3-1)
R ‘ 1 A

(M +4,D)¥Y -i28,{D, ¥, —3 Pu¥ 01 =0,

. | 1
ﬂ@%—ZmD}&T“+&W@+mwm+&mewawfqyﬁnwgrm

where the four bispinors and one vector—bispinor are defined as

\.Il(k)a a
k) - , ¥,=| M k=123,4. (3.2)
plh) au
The linear combination of four bispinors is denoted by ¥ :
g = a9+ g9 4 gyl 4 gyl (3.3)

From these equations we can derive (with D= 7uDy):
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25 1
(M+/11D)‘P1+7(D2 4DD)‘P 0, (3.4)
23 1 an)y
(M +4,D) 72(02—2 D]\P_o, (3.5)
28 122\
(1\4+/13D)l113+73(/32—Z Djlp_o, (3.6)
(M+/14D)‘I’4+2Mﬂ(D2—i Aqu’:o. (3.7)
Next, we act
on3.4 by Bi(M+4,D)(M+4D)(M+4D), (3.8)
on3.5 by B (M+4D)(M+4D)(M +4,D), (3.9)
on3.6 by B (M +4D)(M+4,D)(M+4,D), (3.10)
on3.7 by (M +A4D)(M+4D)(M+4D), (3.11)

and sum the results. Using the identities
DD = D* —ieF o1 o D? =D, D, ¥V =0,7,=0,,Y+0,,7, 04 ¥sVns  (3.12)
and taking into account the constraints on the 4 parameters we obtain the basic equation:

{M+}/pr M'UF Jup Y O'DFﬂJu/pL

1 21 2 1

2
where
=S+ o 4 A A+ a4 ), (3.14)
%(41,1213 Aoy + IS + I P ), n:%ﬂimg/u. (3.15)

This equation describes a spin-1/2 particle which, in addition to its electric charge,
possesses three additional electromagnetic characteristics &, o, and 7. The structure of the

resulting equation differs significantly from the known Dirac equation because it contains
second-order derivatives in the additional interaction terms.

4. The presence of gravitational fields

Assuming the wuse of the relativistic interval in real-valued form
ds* = c*dt* —dx* —dy* —dz*, one should use the following form of the basic equation in flat
Minkowski space:

{i;/pr M +%Faﬂ % +%f)Faﬁ P+

Ui 1 o 1 o
SFuF 4 —ezzysopﬂ ﬂFp;bFaﬂj}‘P=O. (4.1)

Ve [—ze D’F, 5" —ezy/“FaﬁFf;/p —é?
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We now extend this approach to a space—time models with Riemannian structure. To
this end, we start with the system:

(M 4 M))\P(l) ~2ip, (D”‘Pﬂ —%[)( Y, )) =0, (4.2)
(M +/12D) ) _2ip, (D“‘Pﬂ —%[)(y“q!ﬂ)j =0, (4.3)
(M +4,D) ¥ -2iB, (D”‘Pﬂ —%ﬁ( Y, )) =0, (4.4)
(M+/1 ) ~2ip, (D”‘P ilﬁ(;f”‘Pﬂ)j:O, (4.5)

—Z(D —17,1 j(ﬂs +ﬂ6\1}(2)+ﬂ7 +ﬂs )+M(\P _%7/1(7/myy)j:0’ (4.6)

where ¥ ), a=1,2,3,4 are covariant bispinors, and ¥ 4 1s a covariant vector-bispinor. We
apply the generalized derivative D, , which accounts for the presence of both electromagnetic
fields and a curved space-time background. The symbol V , denotes the covariant derivative,

I, (x) is the bispinor connection, and y,, (x) are the local Dirac matrices:

D,=V,—ied,(x)+T,(x), D=y"D,=y"(x)(V,—ied,+T ). (4.7)
We have
a, fB B, a, p B,
AN [ a Br\_pn YV Yy yy"=v"y _
DD=(y“D,)(r Dﬁ)_DafDﬂDafDﬂ_ 45
g (x)D,Dy =D“D,, + j* (x)[D,, Dyl =D* +5 (x)M (),
where
a p B a
D*=D“D,,M,,(x)=[D,,D,1, j*(x)=" W) () =77 ()7 () 4o

We then derive

a H .af .aff n 2 .aff .po .aff _
M+D+ M +—D M, +—D M, s+ M M)t ¥P=0, (4.10
{ [ Ve M( g 7 )} (10

where the involved additional terms are

. 1,
Maﬁ‘P:(DaDﬂ—DﬁDa)‘P:(zeFaﬁ ] pkmﬁj?, (4.11)
i m v =E zeFﬂJ“ﬂ—lR( ) W, (4.12)
M M 4
1 1
off p aff -
MZD] M =— 0 (7 Dp)(leF j 4R( )J‘P, (4.13)

n o -aff _n . yeled 1 2
M3]p] M, Maﬁ—F‘:(lerG]p _ZR) +

vpo vpo

%Fa ( 27" RE ~2 /P REY ~2iy° jP°08" R )+Rﬁ I L ‘”} (4.14)

Thus, the final form of the basic equation is:
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{(;/"D +M)+%(16F i —%Rj Ve (rp, )(zeF i —%RJJF

2

n o 1 ) oo 1
D°D, | ieF, 5 i ——R |+| ieF, j*° ——R | +
M{ ( 2 4}(”"1 4j

%Faﬂ(zj“pzepﬂ — 2" RE" ~2iy° j#°0; ""Rfap) (RW ) jV“(RaﬁéT j‘”)}\yzo. (4.15)

In order to have a standard presentation for Dirac equation, we should multiply the
above equation by imaginary unit i, and make replacement M = iM , so, we obtain

{(iJ/UDU—M)Jrﬁ(zeF j —%R}FM—(}/ D )(ieFaﬁjaﬁ—%R]Jr

2
n| no 1 . |
D°D,_| ieF, P __R |+|ieF, j*° ——R| +
M{ ( S j ( " j

%Fa (2/RS =27 Ry =21y 105" R, ) =(RLpo i ™ ) 7 (Rager j‘”)}\{eo. (4.16)

Equation (4.16) differs from (4.15) only in the formal change of notations:
U=y, oc=>-io, n=>-n, M>0, (4.17)
till now the symbols p,0,n are just formal notations; some of them may be even imaginary

(see in the end of the next Section)
As seen, a number of additional geometrical interaction terms arise through the Ricci

scalar R(x), the Ricci tensor R,;, and the Riemann curvature tensor R, (x). The

contributions from the Ricci tensor and Riemann tensor are zero only if the third parameter 7
vanishes.

5. The non-relativistic equation in flat space
Let us perform the (3+1) -splitting of the above equation. Using the identities
F'Fy=2(E*-B*), F,F}j" =0,
1 W_ 2 g2 1 ki = (5.1
S Ful" = B> -E?, 275 e"F F,=yEB,

and the notations (K;)= (jm,joz,jm), (/;) =(j23,j31,j12) , We can write the main equation

in the form
{i(;/ODO+y/ij)—M+2Zﬂ(EI€ B7)+ 22 (', +'D,)(ER +BJ)-
(5.2)
en 2 ST BT 72 B2 55 B\w_
o (2 (D3 -D,D,)(EK +BI)+(E* - B*)+y EB)‘P—O.
It is convenient to use the Pauli representation for the Dirac matrices:
I 0 .0 o 0 -I
0_ Jj_ J Sy 0,1,2,3 _ 53
A I o, 0 VETrTTT =, (5.3)
1 0 0 1 0 —i 1 0 (5.4)
lof , = , O, = , O3 = : :
o1 oo TP oo o -1
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1 .
The generators j*° = Z( yyt—yP 7”) are given by

0
i : (5.5)

To define large and small components, we apply the projection operators:

0
p=p=171_

+

1

0,

2

I 0
0 0

0 o

, P=P=

0

I-y

0 0
0 7

b

O3

(5.6)

(5.7)

we write

¢.(x)

0
LW =RY=| W, =Y =

o_(x)

In the non-relativistic limit, ¢, (x) is the large component and ¢_(x) the small one.

(5.8)

Presenting the main equation in block form, we obtain the coupled equations:
(iD0 —M)(p+ +iD,o,¢ + %(E& - il?i’&)(p+ +

;[_J[DO (E&—i§5)§0+ +D,0, (_Eg—i]}%)goj -

2

—ﬂ[(z)g -D,D,)(EG-iBG)p, +(E* - B ), —(Eé)go_} 0, (5.9)

M3 J
—-iD.o,p, + (—iDO —M)(of +ej‘l4—ﬂ(—E5' —iﬁ&)gpﬁ +

eo
M?

[—Dkak (Eé-iBG)p. - D, (—E&—ié&)g} -

;—’73[(03 -D,D,)(-EG~iBG)p. +(E* - B*)g. —(EE)@} -0, (5.10)

We now separate the rest energy by the substitutions:
D,=(D,—iM), iD,=(iD,+M), Dy=(D;—2iMD,~M?).
We then obtain

(5.11)

o1 1 eifl(=_ ..
ZHD()@Jr HHDko-k(A +W(EG—ZBG)(0+ +

%K%DO_Z-J(E&_@&)% %Dkak(_ga_iga)go_}

1 1 1 -
;—Z[(WDj ~2i- D, —I—WDijj(Eﬁ—iB&)(p+ +

(5.12)
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;/[O; {_kaGk (55_,-35)% —(%DO —i)(—E&—iE(})(p_}_

e?] 1 2 . 1 1 = =g
K Dy ~2i—-Dy~1-— D,DjJ(—Ea—zBa)(p_+

M|\ M?
(E-F)o -~ 1=(EB)o. |- (513

It 1s known (for instance, see [3, 4]) that we should assume the following orders of
smallness for the involved quantities (magnetic components B, arise from commutators D[kl]’

electric components £, from commutators Dy,

o ~Lp ~X, ﬁDj~x, MD0~X, WNX’ W"X (5 )
In both equations, we will preserve only the terms of order x and x°. In this way we
obtain:

> whence follow their smallness orders):

2, 1 el (- eo (.- en (N o
X" ZEDOQ +lﬁDka¢)— +W(BG)¢+ —W(BG)@ —zW(BO')(o+ =0; (5.15)
o1
X: ¢7=—lkaO'k(p+ =0. (5.16)
Eliminating the small component ¢_, we derive (changing the notations o = io, = -n):
. 1 e -\ (B
iD,p, +E(Dk6k)(Dn0n )o. +E(+,u—0'—m)(30')(o+ =0. (5.17)

Keeping in mind the multiplication rule for Pauli matrices, we arrive at the equation (let
v =¥, , by physical reason we should assume the replacements: u = u, o =0, —in=n):

1
iD, redt//+Wth//+W(BO')t//+M(/¢+0'+77)Bo1// 0. (5.18)

Thus, in the non-relativistic limit, the generalized equation takes the form of the
ordinary Pauli equation for a spin-1/2 particle with anomalous magnetic moment due to
additional (u+ o +n)-term.

6. The non-relativistic approximation in presence of curved space background
The detailed structure of the basic equation within the tetrad formalism reads as

. ¢ o . _ M. k1] _l
{1}/ (e(c) (80 +ied, +FU) M + v; (zeF[kl]] 1 RjJr
—io . [&l] _l
VE — 7 ( €0, +Fc)(leka1] 4R]+

N e . [kl]_l [#] |
JVE {D D (leF[ w/ 4Rj+(le kz]J 4R) +

iZeF (( [kc]Rl [lc]RCk)_j[nc](Ri];_Rik) l}/s][cd]ozms(Rz _R ))

[ ki ] nsc snc

(R )7 (R /1) | =0, 6.1)
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o

where D, —e 8 +ied. + ; Y {mje ][ ],e(c) is a tetred and the symbols Yo stand for Ricci

rotation coefficients. The Latin letters designate the tetrad components. Equation (6.1) contains
the scalar and tensor Ricci quantities.
In order to develop the non-relativistic approximation (this is possible only for the non-

relativistic metric, dS” =dx; + g, dx'dx', we need to fix the smallness orders of the involved
geometrical quantities:

Ropes =(Vavea = Varae ) ¥ (Ve a = Varg Ve ) ¥ (aeV b =V 1) (6.2)
R, =R =(Voen=Vowe )+ (7o 7l = 7oy i )4 (Vo ba = Vvl )- (6.3)

In the non-relatlwstlc equations, only the components of the Ricci tensor with spatial indices
are present, so we get the simpler formula

Ryy =(Vhia = 7has) (Wl =77 i)+ (Varta =7avds)- (6.4)
In the Ricci rotation coefficients, only the following appear: Yo and e Therefore,

expressions for the generalized derivatives are simplified (note that n,m, k,l € {1, 2,3} ):
" , 1 ,
D, =0, +ied, + > M. p,=¢, (o, +ied, )+ Y, . (6.5)

So, in the non-relativistic metrlc, we have:
R,=0, R,=0, R,=0, R,=0, (6.6)

Ry = (7{:’,1 _Vfl,i)+(7fk71ﬁ _7’1ik71l§‘)+(711i71k1 _711;17115')7
Ry, = (751‘,2 - 7%2,;') + (7£k7ik2 - 751(7;[) + (7’1;'7;2 - 71227;),
Ryy = (1313 = 733.) + (als = 733) + (Via¥ss = Vis¥a)s
Ry = (7§i,3 _7é3,i)+(7ék7/i](3 _7’;’1{7&)"‘(71;7; _71i37§i)a
Ryy = (a1 = V) + e = 770 + (P51 = Va3

i i ik ik ik ik
Ry =(in =70+ Vo = ik?2) + (Va?ia = Via?ii)-
Similarly, for non-vanishing components of the curvature tensor we have (indices belong to

{1,2,3} )

(6.7)

Rutnn = (Pitmn = Vi ) (Va7 n = Vit ) ¥ (P s = Vi ) (6.8)
The smallness orders of the involved quantities are:
Dy Yum .. Do o B » Bl 4 E s Bl

n n
—_~

, T ~X, ~X, N ~X, ~X,
M M M M? Mm* M? M* 6.9)
R R R R R
Zro ~ Xz, klz N 2, . ~x2, kln;n - 2, kln;n % kmén - x4.
M M M M M M

Further, making the needed calculations, we arrive at a generalized Pauli-like equation

(18 —edy (x )-l— GnO( ) n)‘Pz—ﬁ(ame("m)(x)(an+ieAn (x))—

L 6,0,G (x ))2‘P+ﬁ(,u+0'+77)(eBn0'n—%RJ‘P. (6.10)

2 m=—n—mn

where we apply shortening notations for Ricci rotation coefficients:
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(7[01]0’7[02]0’7[03]0) =G (x)’(7[23]m’7[02]m’7[03]m) =G, (%)
Thus, in the presence of a curved space—time background, the Pauli-like equation takes the
form of the ordinary Pauli equation for a spin-1/2 particle with anomalous magnetic moment
(u+ o0 +n), and the same coefficient appears in the geometrical term proportional to the Ricci

scalar R .

7. Conclusions

Starting from the extended 28-component representation of the Lorentz group for a
spin-1/2 particle, we have constructed a new relativistic equation that incorporates, in addition
to the electric charge, three further electromagnetic characteristics. The derivation leads to a
generalized 4-component Dirac-like equation in which three new interaction terms appear
explicitly. Each of these additional terms can be naturally interpreted as corresponding to one
of the new electromagnetic characteristics of the spin-1/2 particle, thereby extending the range
of possible interactions beyond those described by the standard Dirac formalism.

The approach has been further generalized to the case of a Riemannian space—time
background, where the formulation is carried out within the tetrad formalism. In this
generalized setting, the presence of curvature introduces a number of additional geometrical
interaction terms into the basic equation. These terms involve contributions from the Ricci
scalar R(x), the Ricci tensor R,;(x), and the Riemann curvature tensor R, (x). The

resulting framework thus provides a unified description of spin-1/2 particles with anomalous
electromagnetic properties, applicable in both flat and curved space—time, and explicitly shows
how electromagnetic and geometrical interactions can be incorporated simultaneously into the
relativistic dynamics of the particle.

References

1. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. A 117, 610-624
(1928);The quantum theory of the electron. Part II. Proc. R. Soc. 4 118, 351-361 (1928).

2. Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an
electromagnetic field. Proc. R. Soc. Lond. A 173, 211-232 (1939).

3. Rarita, W., Schwinger, J.: On a theory of particles with half-integral spin. Phys. Rev. 60,
61-64 (1941).

4. Ginzburg, V.L.: To the theory of excited states of elementary particles. Zh. Eksp. Teor. Fiz.
13, 33-58 (1943) (in Russian).

5. Davydov, A.S.: Wave equations of a particle with spin 3/2 in the absence of a field. Zh.
Eksp. Teor. Fiz. 13,313-319 (1943) (in Russian).

6. Bhabha, H.J.: Relativistic wave equations for elementary particles. Rev. Mod. Phys. 17,
200-215 (1945).

7. Bhabha, H.J.: The theory of the elementary particles. Rep. Prog. Phys. 10,253-271 (1946).

8. Harish-Chandra: Relativistic equations for elementary particles. Proc. R. Soc. Lond. A 192,
195-218 (1948).

9. Gel’fand, .M., Yaglom, A.M.: General relativistic invariant equations and infinite-
dimensional representations of the Lorentz group. Zh. Eksp. Teor. Fiz. 18, 703—733 (1948).

10. Fradkin, E.E.: On the theory of particles with higher spins. Zh. Eksp. Teor. Fiz. 20, 27-38
(1950).

11. Bhabha, H.J.: An equation for a particle with two mass states and positive charge. Philos.
Mag. 43, 33-47 (1952).

10



=  Reports of NAS RA NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA
/<< QUU Qtinyghtin  <UBUUSULD <ULLAUMESNFE-EBUL GhSNFE-BAFLLELP U23USPL UUUAGUDU

12. Fedorov, F.I.: Generalized relativistic wave equations. Dokl. Akad. Nauk SSSR 82, 37-40
(1952).

13. Fainberg, V.Ya.: On the interaction of higher-spin particles with electromagnetic and
meson fields. 7r. Fiz. Inst. Akad. Nauk SSSR 6, 269—332 (1955).

14. Ginzburg, V.L.: On relativistic wave equations with a mass spectrum. Acta Phys. Pol. 15,
163—-175 (1956).

15. Shimazu, H.: A relativistic wave equation for a particle with two mass states of spin 1 and
0. Prog. Theor. Phys. 16, 285-298 (1956).

16. Buchdahl, H.A.: On the compatibility of relativistic wave equations for particles of higher
spin in a gravitational field. Nuovo Cimento 10, 96—103 (1958).

17. Shelepin, L.A.: Covariant theory of relativistic wave equations. Nucl. Phys. 33, 580-593
(1962).

18. Aurilia, A., Umezawa, H.: Theory of high spin fields. Phys. Rev. 182, 1682—1694 (1969).

19. Kisel, V.V., Pletyukhov, V.A.: Wave equations with repeated representations of the
Lorentz group: Half-integer spin. Proc. Natl. Acad. Sci. Belarus, Phys.-Math. Ser. 3, 78—
83 (1970).

20. Capri, A.Z.: Electromagnetic properties of a new spin-1/2 field. Prog. Theor. Phys. 48,
1364-1374 (1972).

21. Khalil, M.A.K.: Properties of a 20-component spin-1/2 relativistic wave equation. Phys.
Rev. D 15, 1532-1539 (1977).

22. Mathews, P.M., Vijayalakshmi, B.: On admissible Lorentz group representations in unique-
mass relativistic wave equations. Phys. Lett. 4 92, 157-160 (1982).

23. Mathews, P.M., Vijayalakshmi, B.: On inequivalent classes of unique-mass relativistic
wave equations with repeated irreducible representations. J. Math. Phys. 25, 1080—-1087
(1984).

24. Kisel, V.V., et al.: Elementary Particles with Internal Structure in External Fields, Vols.
I-II. Nova Science Publishers, New York (2018).

25. Ovsiyuk, E.M., et al.: Spin-1/2 particle with anomalous magnetic moment in a uniform
magnetic field. Nonlinear Phenom. Complex Syst. 19, 153—165 (2016).

26. Kisel, V.V., et al.: Spin-1/2 particle with two mass states interacting with external fields.
Nonlinear Phenom. Complex Syst. 20, 404—423 (2017).

Author Contributions: The authors equally contributed to this work in the conceptualization of the
study, in the mathematical derivations, and in the writing of the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: The work by A.M. Ishkhanyan was supported by the Armenian State Committee of Science
(grant No. 21AG-1C064).

Data Availability Statement: No data were generated or analyzed in this research.

Conflicts of Interest: The authors declare no conflict of interest.

11



=  Reports of NAS RA NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA
AU | ) &< QUU Qblnyghtp  <UBUUSULP KULLUMESNFESUL AhSNFRSNFLLE D U2QUSHL WUUAGURY

uuonNeuaprr
Bnbp jpugnighs punipwuqptpny 1/2 uyghtt niukgnn dwutthjh hwdwp
inp hwjuwuwpmu L Ejunpudwuquhuwlju b gpujhunwughnt nuownbph
nkwpnid

Jwuhh Uhuby!, Gihuw Odupnily?, Uuwnnt Fniph?, Ujhtw bduoljlihs?,
dhlwnnp (rEnny?, Uppnip Poluwbywt

Pudnpiwnphluyh b pwghnk Ejupnuhjuygh phjunniuwjut ghnwlut hwdwjuwpuwi, Uhtul,
220013 Fhjunniu
2Ungqhph whknwljut dwtjudupdujut hwdwjuwpwl, Unghp, 247760 fEjunniu
SPEjunniuh @UU £.P.Unbtywinyh widut dhghlujh httunnhwinin, Uhtuly, 220072 AEjunniu
422 RUU dhqhjulju hbnnwgnuinipjniiibph htunmhwnnin, Upnwpuly, 0204 Zuyuunwt

“Zunnprulgnipyut hudwp' v.redkov@ifanbel.bas-net.by

AEdwun-8wgnuh punhwinip dbpnnh opowtwlutpnud, Ljukng Lopkugh
Tutph puyuyiufws 28 pununphs niitkgnn kpljuyugnidhg, dkiip funnigmd kup tnp
nhjwnhyhunwuljut  P-hujuphwbn pinhwipuguws hwjuuwpnid 1/2 uwhb
niukgnn dwuthyh hwdwp, npp LEjupwlwb thgphg pwgh, odnjws E bu bpkp
punipwgnpbpny: Unpkjp btwju junmigymd £ wquun dwutthih hwdwp, nph nhwypnid
unwgynd £ huwdwyuunwupwt uvyghinpujhtt hwjuwuwpmudutph hwdwlwpg, npt
wjunthtnlb Jhputhnpjuynid £ uyht—ptugnpuyhtt Abh: Uguw wyu tkpuyugdwt ke
ubkpwnynid £ wpunwpht LEjunpudwuqthuwljut qupwntph hkn thnjowqptgnipniup:
Lphy  wihpuyhe  pnibilghwgh  qpugnighy  thninuwlwiibph - wpnwpudwb
wpyniupmd wnnwugynd £ tduqugny snpu pununphy niikignn “thpuwlh wmhuyh
hwjuwuwpnid, npp wwpnbwynd £ thnjuwgpbgnpjut bpkp  tnp - wmud”
Ubjuwpwtiynn npybu dwutthlh jpugnighs fhnpudwghuwjuwt pinipwugptphg
dwgnn: Uju Unwinkgnuip htwnwuqunid punuyuynid |5 [*huwith
nupuswdudwbwluiht $nth Jpu wjwinuijumb wknpunuhtt $opduhqh
opowbwljutipnid, htsh  wpynipnid wpwowunmd ki Eplypusuwhwuljut
hnfuwqntignipyul [pugnighs whuutbp dkpwoyuy (thshh R(x) ufuqwpp, Othshh
R, spEUqnpp b (thuwlh R, g, (x) Ynpnipjul phuqnpp:

Pwiiunh punkp’ 1/2 uyhb niitkgnn dwuthy, pkjunhyhunwluwb hudwswhnipnid,
punhwipugdws hwjwuwpnid, jpugnighs LEjupudwquhuwlut punipuqgpbp,
wpunwpht HEjunpudwqthuwlwt b gpuyhnwughnt nuswntp
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